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This paper presents a general theory and physical interpretation of the interaction 
between a solid body and a Newtonian fluid flow in terms of the vorticity o and the 
compression/expansion variable 17 instead of primitive variables, i.e. velocity and 
pressure. Previous results are included as special simplified cases of the theory. The first 
part of this paper shows that the action of a solid wall on a fluid can be exclusively 
attributed to the creation of a vorticity-compressing wli' field directly from the wall, 
a process represented by respective boundary fluxes. The general formulae for these 
fluxes, applicable to any Newtonian flow over an arbitrarily curved surface, are derived 
from the force balance on the wall. This part of the study reconfirms and extends 
Lighthill's (1963) assertion on vorticity-creation physics, clarifies some currently 
controversial issues, and provides a sound basis for the formulation of initial boundary 
conditions for the w17 variables. 

The second part of this paper shows that the reaction of a Newtonian flow to a solid 
body can also be exclusively attributed to that of the wl7 field created. In particular, 
the integrated force and moment formulae can be expressed solely in terms of the 
boundary vorticity flux. This implies an inherent unity of the action and reaction 
between a solid body and a wl7 field. 

In both action and reaction phases the e l 7  coupling on the wall plays an essential 
role. Thus, once a solid wall is introduced into a flow, any theory that treats o and l7 
separately will be physically incomplete. 

1. Introduction 
Since the influential works of Truesdell (1954), Lighthill (1963), Batchelor (1967), 

and Chorin (1973) it has been found instructive to interpret the dynamic interactions 
inside a fluid or between a fluid and a solid surface in terms of vorticity o = V x u 
rather than with primitive variables u and p .  Meanwhile, various vorticity-based 
formulations of flow problems and corresponding numerical methods have become an 
important complement to the usual u-p computation. The vitality of the vorticity 
interpretation and computation relies on the fundamental difference between a fluid 
and a solid. The former cannot withstand shearing, as precisely represented by 
vorticity. Moreover, as the skew-symmetric part of the velocity gradient, a knowledge 
of vorticity implies knowing not only the fluid motion at a single spatial point, but also 
the relation of that motion with those of neighbouring points. Thus, the vorticity 
reflects the dynamic mechanism of the shearing process more directly than does 
velocity. 

However, in spite of the above pioneering works and other subsequent research, 
vorticity interpretation and computation are still unsatisfactory when a solid wall 
occurs in the flow field. Understanding and simulating the vorticity creation process at 



184 J.-Z. Wu and J.-M. Wu 

a wall remains unclear, especially in its full general form. From the early discussions 
of Lighthill and Batchelor, and also of Morton (1984), one may find some fundamental 
clues to such a creation process, but not a complete theory. Hence, this problem is still 
considered an extremely important unanswered question in fluid mechanics (Trefethen 
& Panton 1990; Majda 1987; Hald 1991). Sherman (1990) noted the problem by 
saying, ‘The irony of the Random-Vortex Method is that it deals entirely with 
vorticity, but does not readily yield a good estimation of the value of w at the wall’. 

A thorough resolution of all the problems associated with vorticity creation from the 
wall must be, and can only be, achieved by a rigorous and sufficiently general 
theoretical analysis of this process. A key step is to fully recognize the importance of 
coupling at a wall between the shearing process and the longitudinal compr- 
ession/expansion process (or compressing process, for short). Dealing entirely with 
vorticity can by no means cover everything. In fact, on a surface element 6s = nJS of 
a Newtonian fluid the stress t has three constituents (Wu & Wu 1992): 

t = -17n+z+t , ,  (1.1) 
where l 7 = p - ( ( h + 2 y ) 8  (1.2) 
is the variable describing the normal compressing process with 9 = V . u being the 
dilatation and p, h the first and second viscosities; 

z = p u o x n  
is the tangential shear stress; and 

(1 -4) 
D 
Dt t , S S = - 2 ~ B . S S = 2 ~ - - ( S S ) ,  B z 9 1 - W ~ ~  

is the viscous resistance to surface deformation, with I being the unit tensor. Thus far 
the variable l7 has not been given a definite name. In this paper it will be called the 
‘compressing variable (or more precisely, the compression/expansion variable). The 
tensor B in (1.4) is the surface deformation tensor. Wu & Wu (1992) showed that while 
t ,  disappears on a rigid wall and in many commonly encountered situations, the normal 
stress - 17n is nevertheless as important as the shearing stress yuo x n. As a result, there 
is a strong m-Zl coupling on solid surfaces due to the adherence condition. This fact 
can be seen most clearly from an observation by Truesdell (1954). If y is constant, then 
the body force (external force plus inertial force) of a fluid element per unit volume has 
a natural Stokes-Helmholtz decomposition 

where f is the external body force per unit mass, p is density and a = Du/Dt is the 
acceleration. Therefore, the uniquely defined 17 and p o  are just a pair of 
Stokes-Helmholtz potentials of the body force. The mutual coupling of Stokes- 
Helmholtz scalar and vector potentials has also been studied by Wu & Wu (1992). 

The above discussion indicates that, as a rational complement to the usual u-p 
approach, the interpretation and formulation of fluid dynamics in terms of uo alone 
should be extended to that in terms of both o and 17. Here ‘interpretation’ is used to 
mean a point of view of looking at things, without computing relevant quantities. For 
example, w and 17 can be either inferred from primitive variables or directly solved 
from the derived equations for o and 17 by taking the curl and divergence of (1.5). On 
the other hand, ‘formulation’ is used to mean a well-posed problem for solving 
relevant variables. Thus, while the u-p formulation aims at solving the Navier-Stokes 
equation directly, the m-Zl formulation should provide a basis for solving the initial 
boundary value problems of the coupled 0-I7 equations. 

&--a) = v17+ v x (/Am), (1.5) 
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Since this paper aims at the general theory of the m-Z7interpretation, no specific flow 
problem is to be solved here. The 0-17 formulation, along with relevant numerical 
methods and examples, is the topic of a companion paper in preparation (for a concise 
version, see Wu et al. 1992). The study here, therefore, does not need to use the coupled 
0-n equations at all. Rather, it is based on the general Navier-Stokes equation with 
variable viscosities, which can be written as a slight extension of (1.5): 

pCf-a)-2B * V p  = Vn+V x (PO), (1.6) 
where B is the surface deformation tensor. The usual form is the negative of (1.6). The 
extra term due to V p  can be further decomposed if one wishes. However, this 
decomposition is far less natural than (1.5) and involves integral operators, which will 
not be addressed here. 

More specifically, this paper concentrates on the action of a solid surface on the wI7 
field and the reaction of the m-17 field created to the solid body. As previously seen, 
this interaction stands at the centre of the o - L ~  interpretation of fluid dynamics. 
Therefore, this paper first provides a careful reconfirmation of Lighthill’s assertion that 
all vorticity created at a solid wall, including the vorticity right on the wall and a 
possible initial vortex sheet, is exclusively due to the boundary vorticity flux (which he 
called the ‘vorticity source strength’). A set of general formulae is presented for this 
flux and the ‘I7 flux’ that occur at arbitrarily curved solid walls in three-dimensional, 
compressible viscous flows. These formulae express the force balance on the wall and 
improve one’s understanding of the relevant physics. 

The second contribution of this paper is a series of new integrated force and moment 
formulae using either the wI7 distribution or their boundary fluxes, reflecting the 
reaction of the wn field created to the solid body. The key result is the establishment 
of force and moment formulae in terms of boundary vorticity flux. These formulae 
further justify the analysis based on the vorticity creation. Hence they clearly reveal the 
inherent unity of the mechanism by which the ctAI field is generated and coupled at 
the solid wall and that by which the generated *I7 field reacts to the body. 

coupling at a solid wall through the 
adherence condition plays a crucial role. In fact, it is this coupling phenomenon that 
makes the fluid dynamic interaction rich and colourful. Lighthill (1963) first discussed 
the underlying physics of this coupling in the context of vorticity creation. Since then 
he has restressed its importance several times (Lighthill 1979, 1986a, b). Coupling also 
leads to some interesting results in the reaction phase, shedding further light on the 
physics of the interaction. Moreover, coupling provides proper boundary conditions 
for the *I7 formulation, with the boundary behaviour of shearing and compressing 
processes as the main and direct concern (Wu et al. 1992). 

This paper is arranged as follows. Part 1 ($82-4) deals with the action phase. It starts 
with the physical concept and source of boundary vorticity, followed by the general 
formulae for boundary fluxes. The study then turns to a more detailed analyses 
of the physics. Some currently controversial issues are clarified. Part 2 (@5-7) 
addresses the reaction phase. The general physical picture is reviewed first, then the 
new force and moment formulae based solely on boundary vorticity flux are derived. 
The existence or non-existence of parallel formulae in terms of the compressing 
variable 17 and its flux is explored. Finally, some concluding remarks are presented. 

In both action and reaction phases, 

7 FLM 254 
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Part 1. w-17 production from a solid surface 
This part discusses the mechanism of *I7 production from a solid surface (the action 
phase), forming the basis of the entire analysis. The emphasis is on the vectorial 
shearing process, which is much more complicated than the scalar compressing 
process. Once the former is clarified, the latter follows easily. 

2. The concept and source of boundary vorticity 
Four quantities are involved in the interaction of a fluid and the solid surface i3B: the 

boundary vorticity wB, normal stress IIB and their respective normal gradients as 
denoted by 

o = n . V ( p u o )  and 6 = - n . V 2 7  at aB, (2.1 a, b) 

where n = -ti is the unit normal vector directed out of the fluid (subscript B is used 
to denotejuid quantities at solid surface aB. This subscript will be omitted if no 
confusion is caused). o is called the boundary vorticityjlux. For convenience 6 is called 
the boundary compressing flux, although it should be more properly called the 
boundary normal force. These four quantities, o,, n,, cr and 8, constitute a sufficient 
boundary dynamic information set. Once their distribution over aB is known at any 
time t ,  the whole flow problem can be solved by either the Neumann or Dirichlet 
formulation (Wu et al. 1992). Evidently, among these four quantities there exist some 
dynamic relations which reveal the production mechanism. Thus, the task is to 
obtain all relations in their most general forms, guided by unambiguous physical 
arguments. 

First, the concept ‘boundary vorticity’, and even that of ‘vorticity’ itself, needs to 
be clarified. According to 61,  the interpretation of vorticity should be based on a 
deformable fluid element (rather than a point-like particle) in which the motion of 
neighbouring points relative to the element centre can be analysed. Stokes interpreted 
vorticity as twice the angular velocity of such a fluid element. The angular velocity in 
a fluid can then be interpreted in terms of circulation (Batchelor 1967). But a fluid 
element may have circulation only if it belongs to open subsets of the fluid domain V, 
which does not include the solid surface aB. However, a small hemispheric fluid 
element with its centrepoint at aB is conceivable (figure 1 a). Although the adherence 
condition prohibits this element from rotating or translating relative to M, the element 
does experience shearing when there is a momentum flow over its top. It is the shearing 
that rotates the principal axes of the strain-rate tensor at the centre of the element and 
gives it the boundary vorticity wB.  

To quantify the above, a remarkable result discovered by Caswell(l967) concerning 
boundary vorticity wB and boundary dilatation 9, is first used. Caswell proved that for 
any continuous medium the strain-rate tensor D on a stationary boundary i3B, with an 
adherence condition being imposed, may be expressed solely by oB and 8,. While 
Caswell’s formula was confined to a stationary wall, it can be easily extznded to a 
moving wall with angular velocity W :  

2 0  = 2nn6 + n(o’ x n) + (0’ x n) n on aB, (2.2) 

where 0’ = 0 - 2 w  (2.3) 

o ’ . n = O  or o - n = 2 W - n  on aB, (2.4) 

is the relative vorticity, satisfying the boundary condition 
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FIGURE 1 .  The physics of boundary vorticity. (a) A fluid element sticking to the wall. (b) The principal 
axes f ,  and t, rotate around e, = w’/Iw’l. This boundary vorticity is transferred to the interior of the 
fluid by diffusion. 

which is a consequence of the no-slip condition. Therefore, for a Newtonian fluid with 
the stress tensor T = ( - p  + A$) /+ 2pD, the wall stress is (compare with (1.1) to (1.4)) 

(2.5) 
Because of (2.4)’ the right-hand sides of (2.2) and (2.5) have only three independent 
component variables. It then follows that a;? is exactly equivalent to the wall shear 
stress zB, a well-known result: 

t = T * ti = -nil +/LIB’ x ti. 

7 B = / h @ ; ? X f i  or p @ & = f i x 7 B .  (2.6) 
Usually z, is defined on aB only, but once expressed by o it can be conveniently 
‘continued’ into V. 

Now, let (el, e,, ti) be unit orthogonal base vectors on the wall, such that 7 B  = 7e1 and 
= w’e,. Then from (2.2) it can be easily shown that, for any fluid flow over a rigid 

wall, the unit vectors t,(i = 1,2,3) of the principal axes of the strain-rate tensor are 
given by 

(2.7a) I t ,  = v; (S/W’), OYf,(WW’))’ 

t ,  = e,, 

t ,  = (-fz ($/w’) ,  OYh(S/W’))Y 

where (2.7b) 

(see figure lb). Thus, for incompressible flows the angle between t ,  and 7 ,  is always 
$T (a result well recognized for the average inclination angle of hairpin vortices in 
turbulent boundary layers). The t,, t ,  axes, the strongest stretching and shrinking 
directions of the hemisphere respectively, rotate around e, with an angular velocity 

The above observation suggests that the only consistent interpretation of vorticity, 
applicable to fluid elements both in the interior of fluid and on a solid boundary, is 
twice the angular velocity of the principal axes of the strain-rate tensor. According to 
Truesdell (1954)’ this interpretation was due to Boussinesq. 

Now turn to the central problem of how vorticity is created at a solid surface. 
Although the hemisphere in figure 1 (a) cannot move relative to the wall, its vorticity, 

#ii. 

7-2 
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7,K,;-;);;;A 
Sliding 

FIGURE 2. Tangential discontinuity of velocity in inviscid flow. 

once created, can be diffused into the flow field along with the momentum diffusion. 
The vorticity can then be convected. Thus, for incompressible flow without a non- 
conservative external body force, all the interior vorticity must come from the diffusion 
of oB exclusively. In order to understand the vorticity creation process, therefore, one 
only needs to find the source of boundary vorticity oB. While the general result is given 
in $3, it is sufficient here to consider a unidirectional flow over a flat plate at y = 0, with 
u = (u(y, I), 0, 0), o = (0, 0, o(y,  t ) )  and p = 1. Assume that the fluid and the plate are 
at rest for t < 0, and at t = 0 there suddenly appear a uniform fluid velocity U = (U, 
0, 0), a tangential motion of the plate with speed b(t), and a uniform, time-dependent 
tangential pressure gradient i3p/ax = P(t). The question is what happens to those fluid 
hemispheres centred at the plate. 

First, suppose that the fluid is restrictively inviscid. Then all fluid elements, including 
those hemispheres, will simply slide over the plate (figure 2). A discontinuity of velocity 
U-b(t) appears between the fluid and the plate (with different initial conditions, a 
similar discontinuity may occur inside the fluid as well). This discontinuity in no way 
represents a vortex sheet within which lwBl = co because the principal axes of the 
strain-rate tensor of those fluid hemispheres on the wall do not rotate. It is this almost 
trivial point that is quite controversial. Some authors identify such an inviscid 
discontinuity as a vortex sheet, leading to the incorrect conclusion that the vorticity 
creation is a purely kinematic process and has nothing to do with the no-slip condition 
(Morton 1984; Morino 1986, 1990). In fact, Lagerstrom (1973) made a clear distinction 
between an Euler solution and the Euler limit of a Navier-Stokes solution as v+ 0. For 
the latter the no-slip condition is satisfied, causing a vortex sheet on the wall. Unlike 
the pure sliding case shown in figure 2, within a true vortex sheet the principal axes of 
the strain-rate tensor rotate with infinite angular velocity. This happens, ideally, either 
in the limit of vanishing viscosity or before the diffusion smooths out a sudden 
tangential change of flow conditions. 

This being the case, one should introduce the viscosity and no-slip condition into this 
unidirectional flow. It then follows that the vorticity distribution is given by 

(a special case of (4.8)), where o' = - ~ @ w / a y y ) ~  is the boundary vorticity flux. This flux 
is the result of a balance of tangential forces on the wall. Applying the Navier-Stokes 
equation to the wall and using the no-slip condition gives 
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implying that the tangential component of viscous force, cr, on the volumetric fluid 
element (now the hemispheres) resists inertial and pressure forces. It is this resistance 
that make the fluid hemispheres on the wall experience a definite torque, whose time- 
accumulated effect in turn makes the wall experience a tangential stress - voB. Indeed, 
at y = 0 (2.8) gives 

(2.10) 

indicating clearly that the boundary vorticity is created exclusively by the force balance 
over the hemispheres, at least for the present model flow. Moreover, (2.8) also yields 

Thus Lighthill (1963) correctly called c the vorticity source strength (per unit area per 
unit time). However, by (2.1 a) it appears as a diffusive flux. 

The flux c can be singular as well as regular. In the present example the impulsively 
started flow U must come from an impulsive pressure gradient, and the impulsively 
started wall motion must cause an impulsive inertial force. Thus, 

where 8(t) is the delta function. That is, a hemisphere sticking to the wall will 
experience an impulsive force -(V-b,)S(t) = v ( t )  for 0- d t < O+. After separating 
this singular part from the rest, (2.8) and (2.10) become 

(2.11) 

(2.12) 

where yo = - (U-  b,) is precisely the strength of the initial vortex sheet. It is therefore 
evident that, contrary to the opinion of Morton and Morino, this initial vortex sheet 
is also a consequence of the tangential force balance on the wall under a no-slip 
condition. As shown by (2.11), once this singular part is separated, in numerical 
computation the no-slip condition at t = 0 can be dropped (Gresho 1991). However, 
this in no way means that the vortex sheet is not a product of the no-slip condition! 

3. Boundary coupling relations 
The physical discussions of 92 showed that the ultimate measure of the vorticity 

creation process at a wall is neither the boundary vorticity oB nor the initial vortex 
sheet yo. Instead, the measure is the boundary vorticity flux or source strength c. The 
same observation applies to the boundary compressing flux 8 = -aI7/an (e.g. piston 
motion in a pipe). Consequently, knowledge of a,& on a wall also represents the 
physically most natural boundary conditions in the e l 7  formulation (Wu et al. 1992). 
It is therefore highly desirable to obtain the c, 6 formulae of a Newtonian fluid in their 
full generality. These formulae are called the boundary wI7 coupling relations, since 
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they clearly convey the crucial dependence of t~ on nB and of S on oB due to the 
adherence condition. Hence, the formulae show the mutual dependence of o and A’ 
inside a flow field. 

As in the case of unidirectional flow, the desired 6, S formulae result from taking the 
tangential and normal components of the Navier-Stokes equation on a wall. A key 
requirement is that d and 6 must be expressed exclusively in terms of quantities at the 
wall and their tangential derivatives. Such formulae for Stokes-Helmholtz scalar and 
vector potentials were derived by Wu & Wu (1992). Since the Navier-Stokes equation 
(1.6) is written in the form of a Stokes-Helmholtz decomposition, it is straightforward 
to write down the general boundary wL7 coupling relations for three-dimensional 
compressible viscous flow over an arbitrarily curved surface, under the adherence 
condition. 

The velocity adherence condition reads 

u = b  at dB, (3.1) 

where b(x, t )  = bo(t)+ W(t) x [x-xo(t)] (3-2) 
is the velocity of the solid, with xo being the instantaneous rotating centre and 
b, = dxo/dt. Then, the acceleration uB of a fluid particle sticking to a point on aB must 
equal that of the solid surface at the same point, denoted by ub. Therefore, if a point 
on aB has the Eulerian coordinate xB at time t ,  then not only the fluid velocity, but also 
its acceleration, will be the same as that of a solid surface at (xB, t ) :  

% b B ,  t)  = %(xB, 0. (3-3) 
The velocity adherence implies acceleration adherence. 

In what follows the external body forcefin (1.6) will be ignored, because it behaves 
in exactly the same way as the inertial force -u  and can be recovered when desired. 
By comparing (1.6) with the coupling relations given by Wu & Wu (1992) for general 
Stokes-Helmholtz potentials, and by using (2.4) and (3.3) (both of which are the 
consequence of (3.1)), it easily follows that, at each smooth part of aB, the boundary 
compressing flux 6 and the boundary vorticity flux t~ are 

(3 .4~)  an 6 = -- = n.pa,+ (n x V) - &a) -2[(a‘+ W) x n] - Vy, an 

tJ=- a(w) = n x pub+ (n x V). (n/+pm’ x nn) 
an 

+ 29n x v p  + no’ * vy + 2[ w x (n x Vp) + wn . Vp]. (3.4b) 

For this derivation, operations related to tensor B can be found in Appendix A. 

formulae : 
For two-dimensional incompressible flow with p = 1, ( 3 . 4 ~ ~  b) reduce to the familiar 

(3.54 b) 

For various computational needs, boundary relations (3.54 b), particularly (3.5 b), 
have been repeatedly rederived, widely cited, or partly utilized by many authors. Also, 
the physical implications of (3.5b) have been discussed by Panton (1984), Morton 
(1984), Reynolds & Carr (1985), and Hunt (1987). The three-dimensional in- 
compressible version of (3.44 b) was first obtained by Wu (1986) and the extension to 
compressible flows was briefly given in Wu, Wu & Wu (1987). An entirely different 
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derivation of the vorticity flux formula, starting from the vorticity equation rather than 
momentum equation (but independent of the constitutive structure of the continuous 
medium) was presented by Hornung (1988). Fric & Roshko (1989) and Shi, Wu & Wu 
(1990) used (3.4b) to explain the source of all vorticity in the near field of a transverse 
jet. 

Equations (3.44 b) show that the compressing flux S and the vorticity flux a have 
three sources. Therefore 

6 = Sa+6,+SP and a = a,+crt+a,, (3.6a, b) 

where 6, = n - p a b  and 0, = n x p a ,  (3.7a, b) 

are the contribution of inertial force ; 

ST = (n x V).(puo,) and crt = (n x V).(IT/+pa& x nn) (3.8a, b) 

are contributions of non-uniform distribution of shear and/or normal stress at aB, 
which reflect the coupling between o and 17. Finally, 

6, = - 2 [ ( 0 ' +  W )  x n)] Vp = 22. Vlogp-2 W -  (n x Vp), (3 .9~)  
aP = 29n x V,u,+no' - Vp+2[ W x  (n x Vp)+ W n  6 Vp] (3.9b) 

are the effect of variable viscosity, which, in turn, is the result of the temperature 
gradient. 

For later analysis, it is necessary to further split at into two parts: 

a, = a,+a,, (3.10~) 

where 6, = n x V n B  (3.10b) 

is from the normal stress, and 

cr, = (n  x V ) . ( p o ~  x nn) = - ( n  x V).(zn) (3.10~) 

is a novel term from the shear stress. 
In summary, among four boundary dynamic quantities (PO,, 17,, Q and 6) exist two 

coupling relations (3.4a, b). These relations result from the orthogonal decomposition 
of the Navier-Stokes equation at the solid surface and the consequences of velocity 
adherence, (2.4) and (3 .3) .  Owing to these relations, in the boundary dynamic 
information set (pug, DB, y,  6) the number of independent components is reduced to 
three, say po, and D,. This fact is of great importance in the wl7 formulation (see 
Wu et al. 1992). 

It is remarkable that a symmetric and complementary relationship exists between 
n x p i  and nBn, and between 0 and 6. The relationship results from the 
decomposition of the boundary stress and the 'stress flux' respectively. In short, these 
two pairs of equations describe the splitting of shearing and compressing processes in 
their various aspects. It is even more significant to note the close coupling of these two 
processes, which appears in particular in the expressions of a and 6. This inherent 
coupling indicates that once a solid surface appears in a flow, any theory that treats o 
and 17 separately will be physically incomplete. This fact applies equally to 
incompressible flows, where there is cu-p coupling. 

The m-17 coupling is a kind of local mechanism. By a corollary of the Stokes 
theorem 

f s ( n x V ) o S d S =  0,  (3.11) 
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FIGURE 3. The ascending of vortex lines close to the solid surface due to diffusion. In this figure and 
figure 4 the grey vortex lines represent boundary vorticity and stick to the solid surface. 

where 9 is any differentiable tensor and o denotes any meaningful operation of n x V 
and 9, it follows from (3.8a, b) that 

faBS,dS = faBa,dS = f a,dS = 0. 
aB 

(3.12) 

Clearly, these equations represent some conservation laws which will appear as 
compatibility conditions when the resultant force formulae are considered (see $5).  

It should be noted that for 8, and a, a conservation law like (3.12) does not exist. 
But, for the variable-viscosity term in (1.6) (i.e. 2 8  - Vp) an integral relation can be 
found by using relations as given in Appendix A: 

JvB.VpdV= W x  f a ,  pdS. 

Thus, if 8B is isothermal, the integrated effect of 2 B  - Vp disappears. Since the effect of 
variable viscosity is relatively weak, there is no need to return to 8, and a,. 

It is important to see the dual role of a and 6. As the source strengths of w and 17, 
respectively, they are responsible for the creation of w and 17 directly on the wall. But 
as fluxes they are also responsible for sending w and 17 into the flow field. This second 
role enables clarification of the physical mechanisms by which a wZ7field goes into the 
interior of the fluid. 

For two- and three-dimensional flows, the role of c, and a, in sending vorticity to 
the fluid is essentially the same as in a unidirectional flow case. Owing to diffusion (not 
convection), vortex lines infinitesimally close to the surface (i.e. inside the hemispheres; 
but not boundary vortex lines wB, which cannot move) spread from, and parallel to, 
the body surface aB (but not necessarily parallel to wB at the foot of n). For 
convenience here, it is called the ‘ascending mechanism’ (see figure 3). For two- 
dimensional flow, the only way in which vortex lines can spread away from aB is by 
this mechanism. For three-dimensional attached flow, ascending is still the main part 
of the whole vorticity flux a. 

As a part of the ascending mechanism, compressibility directly affects the boundary 
vorticity flux a through a, = n x V[p - ( A  + 2p) 91. Denote by ( ),, the component of a 
vector tangent to the wall; in most cases JV,pl 9 IV,[(h + 2p)  911. Moreover, if the flow 
is steady and 8B is stationary, the continuity equation gives 9, = 0. Thus, in general, 
a due to 8 is weak. However, some important exceptions should not be ignored. One 
such instance is the formation of a starting vortex and the establishment of the Kutta 
condition immediately after the impulsive start of an airfoil. Near the trailing edge 
there must be local regions where the fluid experiences an extremely strong expansion 
or compression. 
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The mechanism behind the flux a, due to shear stress is different and exists only for 
three-dimensional flows. Clearly, it represents W-UI coupling rather than u A 7  
coupling. This is explained in the next section. 

4. Three-dimensional effect on vorticity creation 
As mentioned at the beginning of $3, the basic procedure in deriving (3.4a, b) is to 

separate the normal and tangential components of (1.6) applied on the wall by taking 
scalar and vector products of it with n, respectively. Assumef= 0 and p = constant for 
simplicity. The vector product of (1.6) and n yields 

a,+a,=-nx(Vxpuo) =a-V(puo).n (4.1) 
on the wall. Hence, comparing (4.1) with (3.4b), one sees that the boundary vorticity 
flux a, due to shearing results from re-expressing V(puo). n in terms of wB and its 
tangential gradient (i.e. (3.10~)). 

In 92 it was asserted that, at least for unidirectional flow, vorticity creation is entirely 
caused by the tangential force balance over those fluid hemispheres centred at and 
sticking to the wall. A problem immediately arises. Equation (4.1) indicates that the 
tangential viscous force for balancing the body force and the pressure force is 

-nx(Vxpuo) =a-a, (4.2) 
instead of the whole a. Thus, a, seems not to appear in this balance nor in any normal 
balance. This observation led Lyman to propose taking (4.2) as an alternative measure 
of the vorticity creation strength (see Trefethen & Panton 1990). This measure differs 
from a only in three-dimensional flows. Once in three dimensions it should first be 
judged which measure, u or -n x (V x p), represents the actual rate of vorticity 
creation. The key for making this judgement is to recall that the Navier-Stokes 
equation represents the force balance per unit volume. Hence for vanishing f and 
constant p, the prototype of (4.1) is 

nB x I (u+Vn)dV= -nB x n xpuwdS, 
V fav 

where V and aV are now the volume and boundary surface of one of those 
hemispheres. Therefore, - n x (V x puo) comes from the tangent component of the 
integrated shear stress over closed aV, of which only a part (the bottom of the 
hemisphere) is on aB. 

By contrast, the vorticity creation is a process occurring on any open piece of aB. 
Owing to the partial cancellation of viscous stress n x puw over closed a V, the tangential 
component of the volumetric viscous force cannot always represent the creation 
process completely. It happens in two dimensions, but u, is missing in three dimensions. 
For the latter case the flux a, with a, as part of it, is the only correct measure. It is 
defined on an open surface, entering as a source term into the integrated vorticity 
equation over a control volume with a piece of wall as part of its boundary.? 

The necessity of having a, as part of the vorticity creation strength is further justified 
in the reaction phase (96). 

Two subprocesses can be identified in a,. By (3.10c), there is 
a, = - p d  Vn-nV;(pw'), (4.3 a) 

(4.3b) or a, = (n x 7 ) .  Vn-n[n - (V x z)]. 

t Owing to (3.12), the result will be trivial if the control volume encloses the whole body. 
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FIGURE 4. Boundary vorticity flux due to UI-W coupling. (a) Ascending of vortex lines close to the wall 
caused by the wall curvature. (b) Upturning of vortex lines due to the curl of shear stress. 

In obtaining (4.3b), a vector identity given by Wu & Wu (1992), as well as (2.6), is used. 
It is evident that one subprocess is due to the curvature of 8B (figure 4a), which gives 
rise to the tangential component of a,, denoted by n7,: 

a, = - p o t .  Vn = (n x r )  Vn. (4.44 

Again, this is an ascending mechanism. The other subprocess is mainly related to spiral 
flows above aB, which result in the curl of z or the two-dimensional divergence of w;3 
(figure 4b), yielding a normal component of a,: 

n.n,=cr,,=-n.(Vxz) =-V,,.(pw'). (4.4b) 

A non-zero crr3 implies that vortex lines close to, and originally parallel to, the solid 
surface have a tendency to turn into the normal direction. Thus this is called the 
'upturning mechanism'. The form of (4.4b) indicates that this mechanism has its root 
at the solenoidal property of a vorticity field. 

There is a basic difference between ascending and upturning mechanisms. By (2.1 a), 
for constant p the boundary enstrophy flux, say 7, is given by 

7 =,un.V(&P) = oB-a. 

Therefore, on a non-rotating wall with o f  n = 0 the upturning does not cause an 
enstrophy change, while the ascending does, including a,, a, and a,. For example, in 
this case there is 

of which the sign (enstrophy source or sink) only depends on the curvature of aB along 
the direction of boundary vorticity. 

Lighthill (1963) pointed out that the normal component of vorticity flux is relatively 
small, which is generally true for attached flow. When the separation lines (which must 
exist somewhere on a closed body surface) are approached, however, more careful 
analysis is required. Let el, e,, e3 be a set of orthogonal unit base vectors movable on 
aB, such that e3 = A and el, e, are along the positive directions of z and w respectively. 
Then, for incompressible, three-dimensional steady flow over a stationary curved 
surface it can be shown that 

q7 = o B  * a, = - p @ B  ' Vn ' WB, 

(4.5) 

where 7 = T~ = I T ( ,  h,, h, are the Lam6 coefficients. Right on the separation line C, there 
is T,, = 0. Because z-lines strongly converge to C (Lighthill 1963), it is expected that 
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Separation line L 
FIGURE 5. Horn vortex formation: (a) coordinates, (b) rolling-up of separation stream surface. 

FIGURE 6. Vorticity production at a side edge. 

hl, , = O( 1) on a narrow strip centred at C, with cr3 = O(7). Moreover, near a focus of 
the z-field, the separation line C rolls up, resulting in many spirally wound strips with 
a7, % O(7) (but, by (4.3, c7, = 0 right at the focus as seen in figure 5). As the Reynolds 
number Re approaches infinity, T - O(Re-i), and the width of the strip with h1, ,  9 1 
is O(Re-i), as is the boundary-layer thickness. On the other hand, a higher Re implies 
more tightly spiralled separation lines before terminating at the focus. This, in turn, 
allows for a longer strip and a higher hl,  2: Thus, it is possible to have a local area with 
an impulsive o;, even though Re is very high. In fact, this mechanism is responsible for 
the formation of tomado-like vortices, For more discussion see Wu, Gu & Wu (1988). 

Now consider the tangential component of vorticity flux due to shear, a,,,. Using the 
base vectors (el, e,, e,) again, but with el, e, along the two orthogonal principal 
directions of aB, it can be shown that 

a, = - h 1 ~ 1 ~ 2 e 1 + h , ~ , ~ 1 e , ,  (4.6) 

where K ~ ,  K, are the principal curvatures. If lql % I K , ] ,  the main contribution to a, is 
due to the component of z in the e, direction. For example, figure 6 shows a part of 
the side edge of a plate, which can be idealized as a half-cylinder with radius E +  0. Let 
(e,ee) stand for the unit vectors along the edge and the tangent to the cross-section, 

a,,, = -ee, 

where 7, = ‘5. e. Since E can be made arbitrarily small at the edge, a, dominates the 

(4-7) respectively. Then, one gets 7 e  

8 
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whole process by which the vorticity runs into the fluid from any edge where T , +  0. 
Wu et al. (1988) used this mechanism to explain the wake vortex formation behind a 
three-dimensional trailing edge. Shi et al. (1990) identified a vortex layer near the orifice 
of a jet in a crossflow formed due to this mechanism. 

The above two typical mechanisms for the initial formation of free vortex layers (due 
to aT, and u,,,) occur not only in ‘macroscopic’ separations, but also in ‘microscopic’ 
ones (i.e. local separations inside a boundary layer). Thus, these mechanisms are 
important in the stability and receptivity of boundary layers. a;, is relevant to the 
hairpin structure above a flat plate, and a,,, to the Gortler vortex structure along a 
concave wall. 

Since a, is not balanced by an volumetric force over those hemispheres, equations 
like (4.3)-(4.7) all represent surface force balances along a tangential or the normal 
direction. These balances are one order higher than (2.5) and do not explicitly enter 
into the Navier-Stokes equation. But, they can be clearly illustrated by high-order 
normal and tangential Taylor expansions of a three-dimensional viscous flow field in 
the neighbourhood of a boundary point, such as those derived by Wu et al. (1988) for 
incompressible steady flow over curved surfaces as the basis of their analysis. The 
involvement of higher-order force balances in a indicates again that the concept of 
vorticity creation from a wall is related to the flow behaviour in the neighbourhood of 
a point rather than on a point alone. In fact, by comparing the expressions 

z = - p n - V u  and a = p n . V ( V x u )  

one may clearly recognize that, while for the former only the velocity at normally 
neighbouring points is involved, for the latter the skin-friction at tangentially 
neighbouring points must be involved as well. 

One more remark on the three-dimensional vorticity creation from a wall is in order 
here. It was said in $2 that even wB is created by a; but in three dimensions u contains 
wB. The fact that this situation does not imply a ‘chicken-egg’ paradox is made clear 
by the following argument. Assume that G is the fundamental solution of the heat 
equation in free space, and o = 0 in the interior of the flow at the impulsive start 
moment t = 0. The effect of convection can be put aside in the present discussion. Then 
for incompressible flow with p = 1, it can be shown (Wu et al. 1992) that the three- 
dimensional counterpart of (2.8) reads 

o(x, t )  = 2 1  d7 f Gu dS+ convective effect, (4.8) 
SB 

where a contains oB. A singularity of a due to an impulsive start can be handled like 
(2.1 1). The physical evolution is : (i) at t = 0 the flow is potential except for the singular 
vortex sheet on the wall, which is already the result of (the singular) u and can in no 
way yield a a,; (ii) for t 2 0+, a finite a-distribution continuously adds new wB to the 
left by diffusing the initial vortex sheet (see (2.12)); and (iii) then, the wB distribution 
gradually evolves to form a a,. Therefore, a, is ultimately an accumulated result of a, 
and a,. 

Finally, the boundary compressing flux S can be discussed in a similar but much 
simpler way. Equation (3.4a) represents the dynamic balance along the normal 
direction, and among the inertial force, pressure gradient and non-uniform shearing. 
In particular, if the wall acceleration ub = 0 and p is constant, then 

S =  a,, i.e. n-Vl7= V;z on aB, (4.9) 
showing again the close coupling of shearing and compressing processes. 
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The physical meaning of compressing flux 8, due to shear can be clearly seen from 
(4.9). A non-uniform distribution of shear stress z, particularly its two-dimensional 
‘source’ or ‘sink’, produces a compressing flux or normal pressure force. This is 
precisely in contrast to the mechanisms of a,, the vorticity flux due to normal stress. 
Note that 8, is also highly localized and is important only near flow-separation regions. 
In fact, for incompressible flow there is 

8, = -pn - V(V, - u,) = ,u(n - V)z u,, (4.10) 

representing the upturn (or downturn) of streamlines, which relates to flow separation 
or attachment (Wu et al. 1988). 

Part 2. Force and moment reaction to the body by the created wli’ field 
The roles of shearing and compressing in the local reaction are clearly reflected by (2.5). 
It  is the boundary 0 4 7  that exclusively determines the shear and normal stresses. The 
situation is different, however, for integrated force and moment. Although the total 
force is directly obtainable by integrating (2.5) over the body surface, part of the 
stresses are cancelled out in the integration process. The static pressure on a body 
surface immersed in a still fluid provides a trivial example. In fact, one of the main 
results of this study on the reaction phase is a systematic proof of a fundamental fact 
that, instead of the boundary values of en, their net fluxes contribute to the total 
force and moment. 

5. General discussion 
For incompressible flows, it is well known that the integrated linear and angular 

momentum of a fluid body can be expressed in terms of the first and second vectorial 
moments of vorticity. Thus, the rate of change of these integrals directly leads to 
formulae for force Fand moment L in terms of vorticity (e.g. Wu 1981). For example, 
let V be the material volume of the fluid, d the spatial dimensionality and k = d- 1, 
then 

Lighthill (19863) reported that this result is widely used in estimating the vortex-flow 
force on an offshore structure. The physical implication of (5.1) is also clear (Batchelor 
1967). For a far-field observer, the rate of change of the integrated vorticity moment 
can be viewed as the rate of increase of the vectorial area spanned by a closed vortex 
tube. This consists of the ‘bound vortex’ associated with a solid body (i.e. the net effect 
of the boundary layer surrounding the body), the continuously elongated wake vortices 
and the starting vortices (see figure 7). 

The same physics can be made clearer as an observer moves close to the above vortex 
system. For example, the observer can move to a control surface downstream of the 
body but far upstream of the starting vortices (a ‘wake plane’). A general wake-plane 
analysis for compressible steady flow was given by Wu & Wu (1989). The elongation 
rate of the wake vortex tubes in figure 7 appears as the convecting flux of the integrated 
vorticity moment across the wake plane. Although this wake-plane analysis is of 
relevance to aerodynamics, a more interesting view is obtained if the observer moves 
even closer, tracing the source of vortex system, i.e. the body surface aB. Then it is 
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FIGURE 7. The increase of area S spanned by a closed-line vortex. 

evident that the increase of S (figure 7), or the steady convecting flux of vorticity 
moment across the wake plane, must come from the continuous vorticity production 
from 8B. This, in turn, must relate to the boundary vorticity flux rather than boundary 
wl7 itself. Therefore, the F, L formulae, once expressed in terms of integrals over aB, 
should have a boundary vorticity flux explicitly in their integrands. This will be 
explored in $6, and is the key theoretical result of the reaction phase. 

Except for the control-volume-integral type mentioned above, which is convenient 
for steady flows only, the integrated force Fand moment L are usually expressed in two 
ways, i.e. in terms of integrals over the material volume V of fluid, and that over the 
body surface. The task is, therefore, to extend previously known results (mainly for 
incompressible flows) in terms of vorticity to the most general forms of these two types 
of F, L formulae in the wL7 interpretation. The emphasis will be on the second type. 
A systematic way of doing so is to transform the corresponding formulae in the u-p 
interpretation by a series of vectorial identities using the Gauss and Stokes theorems. 
Then the mathematical structure of the resulting formulae can be seen clearly. No 
possible valuable expressions of F and L will be missing. These identities are stated in 
Appendix B. For convenience, the familiar F, L formulae of the two types in the w p  
interpretation are listed here. Assuming that external body force is neglected, for the 
first type one has 

and 

(5.2a, b) 

(5.3 a, b) 

where r = x-x,, with x, as the fixed point around which the moment is taken. 
Without losing generality, one takes x, = 0 exclusively. Then by (2.5), the second type 
of F, L formulae in the u-p interpretation are (although in terms of o, l7 already) 

F = - f ~ B  l7itdS-k f t l B  po'xi idS, (5.4) 

L = -f x x l7fidS+f x x (po' x ii)dS. (5.5) 

An apparent difference between the resultant force formulae in the u-p and ell 
interpretations is that, as can be seen from comparing the dimensions of u and o, and 
exemplified by contrasting (5 .2~ )  and (5.1), the position vector x always enters in the 
formulae of the latter. The total force is, of course, independent of the location of the 
origin of x .  Thus, a compatibility condition must exist to ensure this fact. To see this 
in a general way, let 2F be any tensor, x 0 9  be any kind of meaningful product of x 
and 9, and I be the integration operator (over surface or volume). Then the above 
independence implies that 

aB aB 

I{(x + x,) 0 F} = I{x 0 F}, 
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where x,, is a constant vector. It follows from the arbitrariness of x, that 

I f F >  = 0. (5.6) 
This indicates that only those tensors whose integrated effect vanishes can be used to 
construct a single I{x o P}-type formula independent of the origin. One may find that 
the formulae obtained all satisfy the compatibility condition (5.6), either trivially or by 
representing some conservation laws which can serve as integral error-control 
conditions for numerical calculation, no matter what formulation is used. 

Another difference between the F, L formulae in the u-p and *I7 interpretations is 
that in the latter case the formulae do not have a unique form. It turns out that F, L 
can be expressed in terms of vorticity alone, and sometimes, equivalently in terms of 
compressing variable alone. Thus, one has a ‘shearing interpretation’ and a 
‘compressing interpretation’. But only the former covers the whole variety of F, L 
formulae. As a scalar process, the compressing interpretation merely yields a couple of 
results of some interest. Once again, therefore, the emphasis is on the shearing 
interpretation. The parallel existence of these alternative interpretations in no way 
implies that only one process, shearing or compressing, dictates the flow. Rather, the 
possibility of having these alternatives (and hence their infinite combinations) is just 
more evidence of *I7 coupling. 

6. Force and moment integrals : the ‘ shearing interpretation’ 
By comparing ( 5 . 2 ~ )  and (5.3a) with identities (B 2) and (B 3) in Appendix B, for 

incompressible flows the force formula (5.1), as well as a corresponding moment 
formula, is obtained. The compatibility condition of (5.1) is evidently the Foppl 
conservation law of total vorticity. However, these results do not easily extend to 
compressible flows, unless one introduces a physically meaningless vector V x (pu) 
which is not the angular momentum of a fluid particle or a finite fluid body. In fact, 
more instructive results in terms of material volume integrals come from (5.2b) and 
(5.3b) which, by using (B 2) and (B 3 )  again, yield 

F = - -  xx(Vxpa)dV+- X X G , ~ S ,  
k v  ‘s k ‘ I  av 

x x [x x (V x pa)] p[(x x n)(x - a) - (x  x a ) ( x .  n)]dS ( 6 . 2 ~ )  

or (6.2b) 

and for d = 3 only, 

L = - xx * (V x pa) dV+ pxa * (X x n) dS. (6.2 c) 

Here u, = n x pa stands for the tangential inertial force on aV. Like (5.1), both (6.1) 
and (6.2) are free from the constitutive structure of the fluid. The implication becomes 
more apparent if one substitutes (1.5) with both the constant ,u andf= 0. In particular, 
for a stationary body (assume aV = aB+aV,) 

s, L 
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and, say, 

These are indeed formulae in terms of shearing variable puo only. The compatibility 
condition of (6.3) is the conservation law (3.12). Note that (6.3) extends the 
D’Alembert paradox to any compressible rotational flow of an ideal fluid over a 
stationary body with la1 = o ( P )  at infinity. (Exceptions include acoustic radiation and 
supersonic flow, for which the surface integral over aV, is not zero.) 

Now, the body surface integrals (5.4) and (5.5) can be recasted to the ‘shearing 
interpretation’. This can be done by transforming (6.3) and (6.4) through integration 
by parts (Wu 1987). A more direct approach, however, is to utilize the integral identities 
(B 10) and (B 13). In fact, (B 7) and (B 8) correspond to (5.4) and (5.5) respectively, 
provided that 

f = -pa, 9 = -IT, A = pw‘. 

It is natural to decompose each of the F, L into contributions due to normal and 
tangential stresses. Here, they are denoted as Fn,F7 and L , L , ,  which are not 
necessarily orthogonal to each other. 

From (3.10b, c), (B 9a, c), (B 10a) and (B 11) it follows that 

1 F, = -kfa,x x a,dS for both two- and three-dimensional flow ( 6 . 5 ~ )  

and x x 0, dS for three-dimensional flow, (6.5b) 

again with (3.12) as their compatibility conditions. Therefore, as expected, for three- 
dimensional flow F is expressed in terms of boundary vorticity flux solely : 

F = -fa, x x (;a,+ a7) dS for three-dimensional flow. (6.6) 

This remarkable result was first obtained by Wu (1987) for incompressible flow over 
a stationary body, and extended to compressible flow by Wu et al. (1987) without 
giving a derivation. 

Unfortunately, owing to the different tensorial properties of 17 and z, it is impossible 
to express Fas  the integration of a single x x b,, where a, = a,+a, is defined by (3.8b), 
i.e. the boundary vorticity flux due to total stress t = -17n + z. Moreover, because of 
the lack of a, in two-dimensional flow one has to be satisfied with 

Similarly, from (B 13) 

for two- and three-dimensional flows, and for three-dimensional 

(6.8a, b) 

flow only, 

( 6 . 8 ~ )  
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Then, by using any two identities of (B 13*c), 

r 

for three-dimensional flow only. Therefore, from (6.8), 

($x2a - xx - a,) dS for three-dimensional flow. (6.10) 
= s,, 

As a simple application of (6.6), a calculation of the total force of the steady Stokes 
flow over a sphere of radius a may exhibit some of the features of the shearing 
interpretation. Take the spherical polar coordinates ( r ,  6,$)  with the origin at the 
sphere’s centre and 8 = 0 along the direction of oncoming flow U. Then (e.g. Batchelor 
1967) 

Now t~ = e 6 a  = -pe,(aw/ar)a, and by (3.10b, c),  vorticity fluxes due t o p  and 7 are 

(6.11a, b) 

Equations (6.6) and (6.11 b) show that the pressure distribution provides one-third of 
the total drag, while the skin friction provides the other two-thirds. Substitution of 
(6.1 1) into (6.6) gives the classical result 

D = 6anpU or C, = 24/Re. 

Note that the vorticity flux caused by the tangential pressure gradient is by no means 
an inviscid contribution. But it is hard to explain in the conventional u-p interpretation. 
For example, the contribution of pressure to the drag has been said to be due to ‘the 
viscous component of the normal stress’ (Illingworth 1963). This identification is quite 
obscure without a detailed stress analysis (Batchelor 1967). However, the relevant 
viscous mechanism is clearly explained in 992 and 4. The total force F due to a, and 
a,,, is recognized as related to the rate of work required for raising vortex lines near the 
surface due to the cu-p coupling and o-w coupling respectively, which have their roots 
in viscosity and the adherence condition. 

Although (6.6) and (6.11) are of value in numerical computations (for two- 
dimensional incompressible flow (6.5 a) is well-known to computational fluid 
dynamicists), their role in understanding the physics of dynamic interactions is more 
remarkable. In Part 1 the action of a body on a surrounding vorticity field is exclusively 
represented by the boundary vorticity flux. That same flux now reflects the integrated 
reaction of the vorticity created on the body. Therefore, the action and reaction phases 
are conceptually unified in the ‘ shearing interpretation ’. 

It is interesting to look at the part of the stresses which has no net contribution to 
Fand L. Take the total force as an example. First, from identity (B 14) it is seen that 
this kind of normal stress has the form k-l(n x V) x (nx). This is easily understood. For 
instance, consider a uniform inviscid incompressible flow over a stationary body. This 
flow is purely kinematic from the viewpoint of vorticity dynamics. Thus, the pressure 
distribution p n  over aB can be entirely rewritten as k-l(n x V) x (px), such that F = 0 
for both two-dimensional and three-dimensional flows. This is another proof of the 
D’Alembert paradox. Therefore, like (6.3), all normal stresses with kinematic and static 
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background are automatically filtered out when one switches from (5.4) to (6.6). What 
is left are the normal stresses due to viscous dynamic interaction, which must cause a 
boundary vorticity flux. The ap in the Stokes flow over a sphere is of this type. 

Next, in viscous dynamic stress there is still a component which may cancel during 
the integration. By identity (B 15), this component in shear stress has the form 

(nxV) . [ . r (xxn) ]  = n - [ V x ( z x x n ) ] .  

Then (4.3) shows that the corresponding boundary vorticity must be such that: (i) it 
is two-dimensionally divergence-free on aB, and (ii) along its direction the surface aB 
has no curvature. On a thin wing of finite span there are often some local two- 
dimensional regions (for instance the mid-span region of the leeside of a delta wing at 
a moderate angle of attack). One now sees that in the shearing interpretation these 
regions have no contribution to the total friction force F, (but they do if (5.4) is used). 

In $4 it was mentioned that, in comparison with vorticity flux a, due to compressing, 
the flux a, due to shearing is much smaller for attached-flow areas on aB, particularly 
when the Reynolds number is large. However, there must be some vortex lines close to 
the surface breaking away from the surface somewhere that are closely related to the 
flow separation. Now one sees that this mechanism is finally responsible for the overall 
friction drag in the shearing interpretation. 

7. Force integrals : the ‘compressing interpretation ’ 
If one tries to recast various F, L formulae in terms of the scalar compressing process 

alone, the result is much less fruitful than in the shearing interpretation. First, the 
corollary I11 shown in Appendix B excludes any possibility of expressing the moment 
L solely in terms of some volume integral of the moment of V - (’pa). Second, since there 
is no compressing flux due to normal stress, it is also impossible to express F? and L ,  
defined in $6, in terms of that flux. Third, the corollary VI shown in Appendix B also 
indicates that it impossible to recast L, (defined in $6)  in the ‘compressing 
interpretation’. Therefore, using this interpretation there is no integrated moment 
formula at all, nor the counterpart of force formulae like ( 6 . 5 ~ )  and (6.6). Finally, if 
f= pu is set in (B 1) and substituted into (5.2a), a force due to potential flow only is 
obtained, since the no-slip condition cannot to be imposed. Hence (5.1) has no 
counterpart in the compressing interpretation either. The only possibility for the 
‘compressing interpretation’, therefore, is to use a counterpart of (6.1) and (6.3), the 
force integral over material volume, and that of (6.5b), the tangential stress integral 
over the body surface. 

Comparing (5.2b) and (B l), it follows that 

V 

where 6, = n - pa stands for the normal inertial force on a V. It can be proven that (7.1) 
is indeed equivalent to (6.1). In particular, for Newtonian fluid flow with the constant 
,u over a stationary body, one has the counterpart of (6.3): 

F = - xVZ17dV- s, 
Thus, as long as the full adherence condition is imposed, the total force, including 
overall friction, can be expressed solely in terms of the compressing process. 
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Equation (7.1) has an interesting consequence. For incompressible flow over a 
stationary body, by using the familiar formula valid for any continua (Serrin 1959, p. 
168) 

D 9  
Dt 

U.a=---+D:D-~d, 

(7.1) can be rewritten as 

F = ~ J  x(D:D--&oZ)dV, 
V 

(7.3) 

Therefore, for an incompressible flow with 4.n = 0 on its boundary the local 
difference of D:D and $2, after taking a moment, integrate to the local force. This is 
true even though both D .- D and id integrate to the same total dissipation (Serrin 
1959, p. 250). 

The total friction force F, remains in the compressing interpretation. Equation 
(3 .8~)  suggests that the scalar 8, defined by (B 9b) should be identified as 
8, = 8,- (n x V) (2p W). Thus from (B 11 b), for the force due to tangential stress we 
have 

FT=f p d x f i d S =  x8,dS-2Wx npdS. (7.4) 
aB kB kE 

But for the total force F = I;,+ F, (if W = 0) one has to be satisfied with 

F = faB ( - 17it + x&) dS, (7.5) 

the counterpart of (6.7). Even though the compressing interpretation for the total force 
formula is not as simple as (6.6), the overall friction with constant p provides simple 
symmetric results : 

F, = f x& dS for two- and three-dimensional flow 

= -f x x a, dS for three-dimensional flow only, 
aB 

with 8, and a, being the two fluxes due to shearing. 
Unlike the origin of 8, (94) where the shearing interpretation of F, due to crT3 comes 

from the upturn of the close-surface vortex lines, in the compressing interpretation it 
comes from the upturn or downturn of the close-surface streamlines (i.e. from the flow 
separation and attachment). In three-dimensional flow for which both (7 .6~)  and 
(7.6b) hold, the local areas of aB where x8, is important are, in general, different from 
those where x x a, is important. The shearing and compressing interpretations of F, 
provide an alternative along with their own key areas. 

In the new force and moment formulae derived in this section a significant feature 
should be noted: at high Reynolds numbers there are many situations where the 
integrands an and a, in (6.6) and (6.10), as well as ST in (7.6a), are more localized than 
l7 and 7 on the body surface. Indeed, for a Blasius flat plate, a, 4 0 only at its leading 
edge. Even if the flow separates from such a plate, a, has a substantial value only near 
the separation point. Moreover, $4 shows that a, and ST are negligible except for a local 
region close to separation and reattachment lines. In fact, the key areas where a, and 
8, differ from zero appreciably are located precisely around the critical points of the oB 

( 7 . 6 ~ )  
aB 

(7.6b) 
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field (or the z-field) on the body surface. This implies that the theory on critical points 
and their topological structures is intrinsically related to the m-ninterpretation. While 
this relationship is itself a topic worth further exploration, here (7.6a) is used to make 
a rough friction-drag estimation for two-dimensional incompressible steady flow 
merely to illustrate the relevance of critical points to the overall friction F,: 

F , = f a B x & d S = f  x8dS=-  xn-VpdS (7.7a) 

(7.7b) 

For simplicity, assume that the Reynolds number is sufficiently high so that only in the 
region of a separation (or attachment) point V, - z = - ii + Vp =l= 0. Then let N pairs of 
attachment and separation points on aB (denoted by a,, s,, i = 1 , .  . . , N) separate from 
each other, such that for each point, say a,, there is an isolated area Sai (of unit length 
along the third dimension), having a non-zero contribution to the integral in (7.7a, b). 
This contribution can be written as xaI A,, where xat is the mean position vector over 

J.g=-[saiV,-rdS= n -VpdS<O 

is the total ‘source’ of z or ‘sink’ of n - Vp on S,,. On the other hand, 3, > 0 is the total 
‘sink’ of z or total ‘source’ of v .  Vp on S,,. Then (7.7a) or (7.7b) yields 

a 3  fa, 
= I,, xV, 7 dS. 

s,,, and 

[sat 

with the compatibility condition 

Figure 8 shows some relevant patterns with a closed wake for which F, can be easily 
inferred qualitatively by using (7.8). For the flat plate of figure 8(a), one usually 
determines the value of T along the whole surface but neglects the effect of leading and 
trailing edges. Then F, follows from (5.4). In contrast, when using (7.8), only the small 
regions around a and s are important. These two approaches are equivalent. If (5.4) is 
used, although skin-friction 7 varies quite sharply at Q and s, due to the smallness of 
S, and S,, the edge effect can indeed be omitted. On the other hand, if (7.8) is used, 
because of the smallness of S,  and S,, IV, - 71 or In - Vpl becomes so large at a and s that 
the moment of J ,  and J ,  precisely represents the whole integration of 7. As the length 
of the plate increases, the integration area becomes larger in (5.4), simply corresponding 
to the larger x, and xu in (7.8). 

Moreover, if the origin of the coordinates moves to the leading (or trailing) edge, 
then only the trailing (or leading) edge contributes to FT (associated by a larger x). If 
the origin is at the leading edge, 4 should precisely reflect the accumulated effect of the 
whole upstream boundary layer. But, if the origin is at the trailing edge, J ,  should 
precisely predict the whole downstream development of the layer. This can also be seen 
from (7.9). 

In figure 8 (b), s, and a, induce a thrust, cancelling some friction drag due to a, and 
s2. In figure 8(c) if R A,, then q, - 2x, J ,  and E,  = 0. Figure 8(d) is an example 
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FIGURE 8. Typical two-dimensional steady flow patterns. 

without attachment and separation: F, = 0. Then, F, is still zero in figure 8(e). The 
overall drag comes from F, only. Finally, in figure 8 0, F, is solely due to a2, resulting 
in a thrust. A similar discussion on the F, source in three-dimensional flows, in terms 
of a,, was given by Wu (1987). 

These examples show that predicting (and possibly controlling) the global behaviour 
of a flow field by concentrating on local areas where p and z vary sharply, and 
meanwhile covering the whole surface by taking a moment, is a significant characteristic 
of the interpretation. Moreover, using the above results needs topological 
knowledge of the critical points as a prerequisite, while at the same time these results 
supplement the qualitative theory by quantitative dynamic information and relations. 
Consequently, at least to the leading order, both qualitative and quantitative 
characteristics of the dynamic interaction are embodied in the flow patterns 
neighbouring the critical points and their distribution. 

8. Concluding remarks 
(i) A fluid dynamic interaction can be naturally decomposed into a normal 

compressing process, represented by the ‘compressing variable’ I7 = p - (A  + 2p) 9, and 
a tangential shearing process, represented by the ‘shearing variable’ po.  This pair of 
variables is a pair of Stokes-Helmholtz potentials of the Navier-Stokes equation, and 
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each has very different physical characters in its production, evolution and propagation, 
as well as its effect on dynamic interactions. As a complement of the primitive variables 
u-p, fluid dynamic interactions can be alternatively interpreted in terms of 0-17. An 
w17 interpretation of fluid/solid interaction is systematically developed in this paper. 
The action phase describes how the wl7 field is created on a solid surface through the 
acceleration adherence (both no penetration and no slip), while the reaction phase 
gives the integrated force and moment acting on the solid by the 0-17 field produced. 
Many previously known results are included as various special cases. 

(ii) In the action phase, while the decomposition splits a dynamic interaction into 
shearing and compressing fields, the appearance of a solid surface compels them to 
couple through the force balance under the adherence condition. The 0-I7 coupling 
causes not only a boundary vorticity flux due to the tangential gradient of the normal 
stress 17, but also a ‘compressing flux’ due to the tangential gradient of puw. In addition, 
the 0-0 coupling, which exists only in three-dimensional flows, results in a boundary 
vorticity flux due to the shear stress. This wo coupling plays an important role in 
vorticity generation near the flow-separation region. Both the 0-17 coupling and 0-0 

coupling, as well as the effect of the body’s geometry and motion, are fully described 
by two key boundary dynamic relationships (3.4a, b). Based on these relationships, the 
0-I7 production process from a solid surface is clearly identified. 

(iii) In the reaction phase, the main finding was that while the local stress t is entirely 
determined by the boundary 0-17 (which also directly yields the total force F and 
moment L after integration) the real net contribution to F and L is due to the process 
of 0-17 being produced and fed into the fluid, a mechanism exclusively governed by 
boundary 0-I7 fluxes. This inherent connection of the total force and moment and 
boundary 0-17 fluxes has not been discovered before. This connection implies that the 
action and reaction phases of the interaction can be combined into a unified theory. 

More specifically, again due to 0-17 coupling, force and moment can always be 
expressed in terms of the shearing process alone. Sometimes the force can also be 
expressed equivalently in terms of the compressing process alone. In view of the scalar 
nature of this process, however, it cannot cover the full mechanism of the interaction. 
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Appendix A. Formulae concerning tensor B = a / - V u  on a solid surface 

given by (2.2) and 
(A 1) 

then (A 2) 
For simplicity a stationary wall is assumed. Then it is easy to obtain following results. 

Decompose Vu into symmetric and antisymmetric parts D and Q, where D has been 

Q..  a3 =‘(u 2 j , t  - u  $,j ) =‘c 2 ki5 w k ,  

- B = (nn -/) 9 +;n(o  x n) +t(o x n) n + Q. 

First, for any vector f 

-B. f  = - f , s + ~ n ( w x n ) . f + t ( o x n ) ( n . n - & U x f ,  (A 3) 
- f B = -f, 9 +$.<a x n) * f + t ( o  x n) (n -8 +&U X J  (A 4) 
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In particular, i f f= n, 
B . n  = 0, 

n -  B = n x o .  
Moreover, by (A 3) and (A 6) ,  

but by (A 4) and (A 5), 

Next, from (A l), 

n . ( B . f ) = ( n . B ) f = ( n x o ) . f ,  

(f. B) - n =f. (B * n) = 0. 

(f x QLj = +kfk 4 j  - W l J ; ) ,  
thus 

- f x  B = [ ( f x  n) n - f x / I  9 + ; ( f x  n)(o x n) + i [ f x  (0 x n)] n 

+P[(o*j)/-(Uf]. (A 9) 
From (A 9) and (A 5)  it follows that 

( f x  B ) .  11 = f X  ( B .  n) = 0. 
Again by (A 9), 

- n x  B = -n X / $ + ; [ [ O - ~ ( [ O  - n ) ] n + $ [ ( ~  n) / -n] ,  

-(n x B) *f= -n x (B .f) = ( f x  n) 9 +if,(@ - n). 

- B x f =  [ n ( n x f > - / x f l 9 + t n [ ( o x n )  x f ] + t ( w x n ) ( n  x f ) + ; [ ( f . o ) / - f w ] ,  

from which and with (A 3) then 

(A 11) 
Then, from (A 1) and (A Z), 

hence 
n. (B x f) = (n. B) x f = (n x w) x$ 

Appendix B. Volume and surface integral identities 
Let x be the position vector with arbitrary fixed origin, d the spatial dimensionality, 

and k = d-  1. Then for any differentiable vectorfin a domain Y bounded by aY, the 
following results concerning volume integral identities occur. 

COROLLARY I. The integral off over V can be equivalently expressed in terms of either 
only V . f o r  only V x f ,  along with the boundary value off. Namely 

or J v f d v  = J;  x (V x f ) d V - -  x x (n xf)dS. k 'f av 
COROLLARY 11. The integrated vectorial moment off can be expressed solely in terms 

of V x f ,  QS well as the boundary value o f f .  Namely 

j x x f d V  = '1 x x [x x (V x f ) ]  [(x x f ) ( x  n)  - ( x  x n ) (x  -f)] dS 
V d V  

(B 3 4  
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lv x xfdV = xx - (V x f) d V -  s, i,, x f .  (x x n) dS. (B 3 c )  

COROLLARY 111. The integrated x x f cannot be expressed in terms of V f only. 
Note that in three-dimensional space a vector Q has three different second-order 

vectorial moments x x (x x p), x2q and x(x . Q), related by 

x x (x x (0) = x(x. Q ) - X Z Q .  (B 4) 
When d = 2, for Q = V xf, the moment x(x - 9) is identically zero. 

(B 2) are direct consequences of a pair of vector identities 
The proof of the above results is a routine exercise of vector analysis. First, (B 1) and 

xv - f = v * ( fx ) - f ,  
x x (V x f )  = V(x .f>-V - (xf) +kf 

along with the Gauss theorem. Moreover, it can be shown that 

x x [V(x  * f) - v . (xf)] = - v x (xx . f) - v . (xx x f )  + x x f ,  

xyv Xf) = v x (x") - 2x xf, 

x[x - (V xf)] = v. (fx xx)+x xf, 

which, along with (B 6) ,  yields (B 3a) at once. Then 

which gives (B 3b). Similarly, 

which gives (B 3c),  for d = 3 only. Equation (B 3 4  can also be obtained by using 
(B 3a, b) and (B 4): 

( d - 2 ) S  xxfdV= xx-(Vxf)dV- xf.(xxn)dS, 
V Sv f 

which leads to 0 = 0 for d = 2. 

V -f disappears. This justifies the corollary 111. 
On the other hand, once a vector product is made of x and (B 5) ,  the term containing 

Now consider following expressions : 

f d V = -  $ndS+ nxAdS,  (B 7) 

(B 8) 

with A - n = 0 at i3V. Of course, - q5n and n x A represent an orthogonal decomposition 
of a vector defined at aV. Let x, d and k be defined as before, and denote 

(B 9 e c )  

Jv fa, fa" 1 V xxfdV=-f  av xx$ndS+f  av x x ( n x A ) d S  

G$ = -(n x V)q5, S, = (n x V) - A, o, = (n x V) . ( A  x nn). 

Then the following results hold. 

the Jirst-order moments of their respective derivatives, namely 
COROLLARY IV The surface integrals of - q5n and n x A in ( B  7 )  can be expressed by 

-Iv (B 10a) 
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and f, n x A dS = xd, dS. f v (B  lob)  

In particular, for d = 3 only, the surface integral of n x A can also be expressed as 

n x A d S = -  xxa,dS. f v 
COROLLARY V. The surface integral of the moment of - $n in (B  8 )  can be expressed 

by the second-order moments of its derivative, namely 
or 

- f, ( B  12a) 

( B  12b) 
1 or = 5fav x2a, dS, 

and for d = 3 only, 
- f v x x $ n d S = - ~ ~ v x ( x . c ~ ) d S .  (B  12c) 

COROLLARY VI. It is impossible to express the surface integral of x x (n x A) in terms 

COROLLARY VII. However, for d = 3 only, 
Of sA 

f v x  x (n x A)dS = - x x (x x a,)dS- (A - x)ndS ( B  13a) f v 
or 

or 

T$av 1 x2cA dS-fav A(x n) dS ( B  13b) 

= - $av x(x . cA) dS + fa, n(x * A) dS. ( B  13c) 

The proof of ( B  10)-(B 13) is outlined as follows. First, (B  10a, b) are a direct 
consequence of another pair of easily proved identities 

(n x V) x ($x) = -k$n-x  x (n x V$) 
(n x 0) - (Ax) = A x n+x(n  x V) - A, 

along with the Stokes theorem (3.11). 
Then, by (B 9a) the vector product of x and (B 14) leads to 

-kx x $n = x x [(n x V) x (9x)I-x x (x x c$) 
= (n x V ) ~ [ ( x Z / - - x x ) ~ ] + x  x 4n-x x (x x a$), 

hence 

from which and with (3.11) one has (B  12a). Moreover, it can be shown that 
- d(x  x $n) = (n x V) - [(xa/- xx) $1 - x x (x x c,), 

x2(n x Vq5) = (n x V) (x”) + 2x x $n 

(B  16) 

(B 17) 
from which and with ( B  9a), ( B  12b) follows. Then ( B  16) and ( B  17) give 

(d-2)(xx$n) = ( n x V ) . ( x x $ ) + x x - c $  

which leads to ( B  12c) if d = 3, and 0 = 0 if d = 2. 
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In order to express the integral of x x (n x A) in terms of a,, the only starting point 
is (B 15). But the vector product of x and (B 15) leads to the trivial result 0 = 0. Thus 
the result is VI. 

There remains the proof of (B 11) and (B 13 ~ c ) .  For this purpose let B = A x n and 
rewrite (B 9c) as 

It can be shown that 
bA = (n x V) . (Bn) .  

x x [(n x V)*(Bn)]  = (n x V).[B(x x n)]+B-n(B. n). 

x x (n  x A )  = - x  x B = x x {(n x V ) . [ B ( x  x n ) ] } - x  x ( x  x bA) 

(B 18) 

Thus because B - n  = 0 we have (B 11). Moreover, the above equality gives 

= (n x V ) . [ B X  x ( X  x n)] -n(A - x ) - x  x ( X  x G,), (B 19) 
which, by (3.11), leads to (B 13a). Then 

X%, = (n x V) ' (x2Bn) - 2(n x x )  * Bn 
= (nxV).(x2Bn)+2(x.A)n-2A(x-n)+2A(x.n) 
= (n x V) ' (x2Bn) + 2x(n x A )  + 2A(x * n), (B 20) 

(B 21) 

which gives (B 13 b). Similarly, it can be shown that 

x x  * bA = (n x V) . (Bxx - n) - x x (n x A )  + n(n . A )  

which leads to (B 13c) and is non-trivial for d = 3 only. 

conveniently carried out by using the component form of Cartesian tensor analysis. 
All the above calculations concerning various vector differentiations can be 
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